Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
2.
JAMA ; 331(15): 1318-1319, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506835

RESUMO

This JAMA Insights in the Climate Change and Health series discusses the importance of clinicians having awareness of changes in the geographic range, seasonality, and intensity of transmission of infectious diseases to help them diagnose, treat, and prevent these diseases.


Assuntos
Mudança Climática , Doenças Transmissíveis , Humanos , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/epidemiologia , Processos Climáticos , Clima Extremo , Incêndios Florestais , Gases de Efeito Estufa/efeitos adversos , Combustíveis Fósseis/efeitos adversos , Vetores de Doenças , Zoonoses/epidemiologia , Micoses/epidemiologia , Doenças Transmitidas pela Água/epidemiologia , Educação Médica , Política Pública
4.
Mar Pollut Bull ; 200: 116112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320442

RESUMO

Rapidly increasing concentration of carbon dioxide (CO2) in the atmosphere not only results in global warming, but also drives increasing seawater acidification. Infaunal bivalves play critical roles in benthic-pelagic coupling, but little is known about their behavioral responses to compound climate events. Here, we tested how heatwaves and acidification affected the behavior of Manila clams (Ruditapes philippinarum). Under acidified conditions, the clams remained capable of burrowing into sediments. Yet, when heatwaves attacked, significant decreases in burrowing ability occurred. Following two consecutive events of heatwaves, the clams exhibited rapid behavioral acclimation. The present study showed that the behavior of R. philippinarum is more sensitive to heatwaves than acidification. Given that the behavior can act as an early and sensitive indicator of the fitness of intertidal bivalves, whether, and to what extent, behavioral acclimation can persist under scenarios of intensifying heatwaves in the context of ocean acidification deserve further investigations.


Assuntos
Bivalves , Clima Extremo , Animais , Água do Mar , Concentração de Íons de Hidrogênio , Bivalves/fisiologia , Clima
6.
Nat Med ; 30(4): 1118-1126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424213

RESUMO

Climate change is intensifying extreme weather events. Yet a systematic analysis of post-disaster healthcare utilization and outcomes for severe weather and climate disasters, as tracked by the US government, is lacking. Following exposure to 42 US billion-dollar weather disasters (severe storm, flood, flood/severe storm, tropical cyclone and winter storm) between 2011 and 2016, we used a difference-in-differences (DID) approach to quantify changes in the rates of emergency department (ED) visits, nonelective hospitalizations and mortality between fee-for-service Medicare beneficiaries in affected compared to matched control counties in post-disaster weeks 1, 1-2 and 3-6. Overall, disasters were associated with higher rates of ED utilization in affected counties in post-disaster week 1 (DID of 1.22% (95% CI, 0.20% to 2.25%; P < 0.020)) through week 2. Nonelective hospitalizations were unchanged. Mortality was higher in affected counties in week 1 (DID of 1.40% (95% CI, 0.08% to 2.74%; P = 0.037)) and persisted for 6 weeks. Counties with the greatest loss and damage experienced greater increases in ED and mortality rates compared to all affected counties. Thus, billion-dollar weather disasters are associated with excess ED visits and mortality in Medicare beneficiaries. Tracking these outcomes is important for adaptation that protects patients and communities, health system resilience and policy.


Assuntos
Desastres , Clima Extremo , Idoso , Estados Unidos/epidemiologia , Humanos , Medicare , Atenção à Saúde , Aceitação pelo Paciente de Cuidados de Saúde
7.
Sci Total Environ ; 918: 170644, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38320708

RESUMO

Extreme wind and rainfall events have become more frequent phenomena, impacting coastal ecosystems by inducing increased mixing regimes in the upper mixed layers (UML) and reduced transparency (i.e. browning), hence affecting phytoplankton photosynthesis. In this study, five plankton assemblages from the South Atlantic Ocean, from a gradient of environmental variability and anthropogenic exposure, were subjected to simulated extreme weather events under a global change scenario (GCS) of increased temperature and nutrients and decreased pH, and compared to ambient conditions (Control). Using multiple linear regression (MLR) analysis we determined that evenness and the ratio of diatoms/ (flagellates + dinoflagellates) significantly explained the variations (81-91 %) of the photosynthesis efficiency (i.e. Pchla/ETRchla ratio) for each site under static conditions. Mixing speed and the optical depth (i.e. attenuation coefficient * depth, kdz), as single drivers, explained 40-76 % of the variability in the Pchla/ETRchla ratio, while GCS drivers <9 %. Overall, assemblages with high diversity and evenness were less vulnerable to extreme weather events under a GCS. Extreme weather events should be considered in global change studies and conservation/management plans as even at local/regional scales, they can exceed the predicted impacts of mean global climate change on coastal primary productivity.


Assuntos
Diatomáceas , Dinoflagelados , Clima Extremo , Fitoplâncton , Ecossistema
8.
Virology ; 591: 109981, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211381

RESUMO

In the western United States, curly top disease (CTD) is caused by beet curly top virus (BCTV). In California, CTD causes economic loss to processing tomato production in central and southern areas but, historically, not in the north. Here, we document unusual CTD outbreaks in processing tomato fields in the northern production area in 2021 and 2022, and show that these were caused by the rare spinach curly top strain (BCTV-SpCT). These outbreaks were associated with proximity of fields to foothills and unusually hot, dry, and windy spring weather conditions, possibly by altering migrations of the beet leafhopper (BLH) vector from locations with BCTV-SpCT reservoirs. Support for this hypothesis came from the failure to observe CTD outbreaks and BLH migrations in 2023, when spring weather conditions were cool and wet. Our results show the climate-induced emergence of a rare plant virus strain to cause an economically important disease in a new crop and location.


Assuntos
Beta vulgaris , Clima Extremo , Geminiviridae , Hemípteros , Solanum lycopersicum , Animais , California/epidemiologia , Surtos de Doenças
9.
Eur J Psychotraumatol ; 15(1): 2296818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38224060

RESUMO

Background: The perinatal period is a time of increased vulnerability for perinatal mood and anxiety disorders (PMADs). Emotional trauma is a risk factor for PMAD development and is common among survivors of extreme weather events (EWEs), which are becoming more frequent and intense as the climate crisis progresses. EWE-related stress and anxiety have not been extensively studied in the perinatal population. However, the limited available data suggest a negative impact of EWE exposure on perinatal mental health, warranting further investigation and investment.Objective: To address this knowledge gap, we interviewed new Australian mothers to understand how EWEs affect the mental health of the perinatal population.Method: Australian mothers (18 years of age or older) with a baby under 12 months of age were recruited to participate in a single virtual focus group session (seven group sessions were run in total) and complete an anonymous survey. Participants were asked questions regarding their concerns about extreme weather and its impact, as well as their general maternal functioning. Maternal functioning, depression, and climate distress were measured via the survey.Results: The study sample comprised 31 Australian mothers (Mage = 31.74, SD = 4.86), predominantly located in Queensland. Findings from the focus groups suggested six key themes; however, of focus to this study are three themes related to maternal mental health: health and well-being, helplessness and avoidant coping, and resilience and adaptation. Predominant subthemes focused on trauma resulting from EWE exposure, economic and heat concerns, social isolation, hopelessness about the future, and feelings of resilience.Conclusions: The evidence linking adverse perinatal mental health outcomes with climate change and EWEs highlights the urgent need for interventions in this context to protect perinatal mental health and well-being. By acknowledging the traumatic impact of these experiences on mothers, this study supports advocacy for policies that specifically address this issue.


The extra consideration of navigating climatic events with children represented a complicating factor in addition to the demands of motherhood.Heat presented as a serious concern for participants, often as part of maintaining the balance between protecting their children's health and well-being and preserving their own mental health.Mothers simultaneously were disengaged from climate-related discussion or action and expressed feelings of helplessness in the face of the magnitude of climate change.


Assuntos
Clima Extremo , Saúde Mental , Feminino , Lactente , Gravidez , Humanos , Adolescente , Adulto , Mudança Climática , Austrália/epidemiologia , Mães/psicologia
10.
PLoS One ; 19(1): e0296044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170721

RESUMO

In recent years, X-band phase array dual polarization weather radar technology has matured. The cooperative networking data from X-band phase array dual polarization weather radar have many advantages compared with traditional methods, namely, high spatial and temporal resolution (approximately 70 seconds in one scan, 30 m in radial distance resolution), wide coverages that can compensate for the observation blind spots, and data fusion technology that is used in the observation overlap area to ensure that the observed precipitation data have spatial continuity. Based on the above radar systems, this study proposes an improved hail and lightning weather disaster rapid identification and early warning algorithm. The improved thunderstorm identification, tracking, analysis, and nowcasting (TITAN) algorithm is used to quickly identify three-dimensional strong convective storm cells. Large sample observation experiment data are used to invert the localized hail index (HDR) to identify the hail position. The fuzzy logic method is used to comprehensively determine the probability of lightning occurrence. The comparative analysis experiment shows that, compared with the live observation data from the ground-based automatic station, the hail and lightning disaster weather warning algorithm developed by this study can increase warning times by approximately 7 minutes over the traditional algorithm, and its critical success index (CSI), false alarm ratio (FAR) and omission alarm ratio (OAR) scores are better than those of the traditional method. The average root mean square error (ARMSE) for identifying hail and lightning locations by this improved method is also significantly better than that of traditional methods. We show that our method can provide probabilistic predictions that improve hail and lightning identification, improve the precision of early warning and support operational utility at higher resolutions and with greater lead times that traditional methods struggle to achieve.


Assuntos
Desastres , Clima Extremo , Relâmpago , Radar , Tempo (Meteorologia)
11.
BMC Public Health ; 24(1): 120, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191355

RESUMO

INTRODUCTION: Climate change presents a significant risk for the mental and physical health of young people. In order to identify and properly care for potential mental health impairments from extreme weather events, the relevance of these impairments must be assessed as high by the professional groups providing care for children and adolescents. This raises the question of which factors influence the individual relevance assessment of caretaking professionals? METHODS: Data was collected creating and conducting a Germany-wide online questionnaire via LimeSurvey. The questionnaire was addressed to professionals providing care for children and adolescents, in this case medical and therapeutic personnel as well as school and pedagogical personnel. Professional associations, chief physicians and school principals were contacted as multipliers and asked to forward the questionnaire to their members and staff. The data was analyzed using the R statistical software, and multiple linear regressions were performed to test the hypotheses. RESULTS: Overall, 648 questionnaires were taken into analysis. Approximately 70% of the participants considered climate change-induced impacts on the mental health of children and adolescents due to extreme weather events as relevant. Experiencing heat, storm, heavy precipitation, flood/flooding, and/or avalanches/mudflows made a modest yet significant contribution to explaining higher relevance assessments. In contrast, there was no evidence to suggest that an urban working environment increases the relevance assessment. CONCLUSION: The described influence of experiencing extreme weather events should not be regarded as the sole factor leading to higher relevance ratings. A more comprehensive understanding of the factors influencing relevance assessments is necessary to address key aspects of risk communication and increase risk awareness.


Assuntos
Clima Extremo , Deficiência Intelectual , Criança , Humanos , Adolescente , Saúde Mental , Mudança Climática , Alemanha/epidemiologia
12.
14.
Risk Anal ; 44(1): 155-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37105758

RESUMO

This article investigates the economic impacts of a multi-disaster mix comprising extreme weather, such as flooding, pandemic control, and export restrictions, dubbed a "perfect storm." We develop a compound-hazard impact model that improves on the ARIO model by considering the economic interplay between different types of hazardous events. The model considers simultaneously cross-regional substitution and production specialization, which can influence the resilience of the economy to multiple shocks. We build scenarios to investigate economic impacts when a flood and a pandemic lockdown collide and how these are affected by the timing, duration, and intensity/strictness of each shock. In addition, we examine how export restrictions during a pandemic impact the economic losses and recovery, especially when there is the specialization of production of key sectors. The results suggest that an immediate, stricter but shorter pandemic control policy would help to reduce the economic costs inflicted by a perfect storm, and regional or global cooperation is needed to address the spillover effects of such compound events, especially in the context of the risks from deglobalization.


Assuntos
Desastres , Clima Extremo , Pandemias , Inundações , Políticas
15.
Otolaryngol Head Neck Surg ; 170(3): 795-803, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37943865

RESUMO

OBJECTIVE: Extreme weather events are becoming more prevalent with the increasing pace of climate change. These events negatively impact human health and put considerable strain on health care resources, including emergency departments. Within otolaryngology, acute pharyngitis is a common reason for emergency room visits (ERV). Therefore, we aimed to investigate the impact of extreme meteorological conditions on ERV rates related to acute pharyngitis. STUDY DESIGN: Retrospective time-series study. SETTING: ERVs related to acute pharyngitis (n = 1511) were identified at a tertiary care hospital in Vienna, Austria, between 2015 and 2018. METHODS: The effects of single-day and prolonged (3-day) extreme weather events on ERVs were analyzed using a distributed lag nonlinear model. Relative risk (RR) and cumulative relative risk (cRR) were calculated over a lag period of 14 days. RR refers to the risk for pharyngitis-related ERV at extreme conditions (1st, 5th, 95th, or 99th percentile) compared to the risk at median conditions. RESULTS: Same-day RR (lag0) was elevated more than 3-fold after prolonged extremely low mean temperatures (P = .028). Furthermore, same-day RR after single-day and prolonged extremely high relative humidity was elevated by 51% (P = .024) and 46% (P = .036), respectively. Significant delayed effects on cRR were observed for extreme mean temperatures, relative humidity, and mean wind speeds within 8 days and for extreme atmospheric pressure within 14 days. CONCLUSION: Extreme weather events impact ERV rates for acute pharyngitis. Extremely low temperatures, high relative humidity, high atmospheric pressure, and low and high wind speeds were risk-promoting factors.


Assuntos
Clima Extremo , Faringite , Humanos , Estudos Retrospectivos , Serviço Hospitalar de Emergência , Fatores de Risco , Faringite/diagnóstico , Faringite/epidemiologia
16.
Immunol Allergy Clin North Am ; 44(1): 35-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37973258

RESUMO

The objective of this article is to review recent literature on the implications of extreme weather events such as thunderstorms, wildfires, tropical cyclones, freshwater flooding, and temperature extremes in relationship to asthma symptoms. Several studies have shown worsening of asthma symptoms with thunderstorms, wildfires, tropical cyclones, freshwater flooding, and temperature extremes. In particular, thunderstorm asthma can be exacerbated by certain factors such as temperature, precipitation, and allergen sensitization. Therefore, it is imperative that the allergy and immunology community be aware of the health effects associated with these extreme weather events in order to educate patients and engage in mitigation strategies.


Assuntos
Asma , Clima Extremo , Hipersensibilidade , Humanos , Tempo (Meteorologia) , Asma/diagnóstico , Asma/epidemiologia , Asma/etiologia , Alérgenos/efeitos adversos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38063554

RESUMO

Severe weather events can be a catalyst for intimate partner violence, particularly in agricultural settings. This research explores the association between weather and violence in parts of East Africa that rely on subsistence farming. We used IPUMS-DHS data from Uganda in 2006, Zimbabwe in 2010, and Mozambique in 2011 for intimate partner violence frequency and EM-DAT data to identify weather events by region in the year of and year prior to IPUMS-DHS data collection. This work is grounded in a conceptual framework that illustrates the mechanisms through which violence increases. We used logistic regression to estimate the odds of reporting violence in regions with severe weather events. The odds of reporting violence were 25% greater in regions with severe weather compared to regions without in Uganda (OR = 1.25, 95% CI: 1.11-1.41), 38% greater in Zimbabwe (OR = 1.38, 95% CI: 1.13-1.70), and 91% greater in Mozambique (OR = 1.91, 95% CI: 1.64-2.23). Our results add to the growing body of evidence showing that extreme weather can increase women's and girls' vulnerability to violence. Moreover, this analysis demonstrates that climate justice and intimate partner violence must be addressed together.


Assuntos
Mudança Climática , Clima Extremo , Violência por Parceiro Íntimo , Feminino , Humanos , Fatores de Risco , África Oriental
19.
Nature ; 623(7988): 757-764, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968390

RESUMO

Extreme weather events perturb ecosystems and increasingly threaten biodiversity1. Ecologists emphasize the need to forecast and mitigate the impacts of these events, which requires knowledge of how risk is distributed among species and environments. However, the scale and unpredictability of extreme events complicate risk assessment1-4-especially for large animals (megafauna), which are ecologically important and disproportionately threatened but are wide-ranging and difficult to monitor5. Traits such as body size, dispersal ability and habitat affiliation are hypothesized to determine the vulnerability of animals to natural hazards1,6,7. Yet it has rarely been possible to test these hypotheses or, more generally, to link the short-term and long-term ecological effects of weather-related disturbance8,9. Here we show how large herbivores and carnivores in Mozambique responded to Intense Tropical Cyclone Idai, the deadliest storm on record in Africa, across scales ranging from individual decisions in the hours after landfall to changes in community composition nearly 2 years later. Animals responded behaviourally to rising floodwaters by moving upslope and shifting their diets. Body size and habitat association independently predicted population-level impacts: five of the smallest and most lowland-affiliated herbivore species declined by an average of 28% in the 20 months after landfall, while four of the largest and most upland-affiliated species increased by an average of 26%. We attribute the sensitivity of small-bodied species to their limited mobility and physiological constraints, which restricted their ability to avoid the flood and endure subsequent reductions in the quantity and quality of food. Our results identify general traits that govern animal responses to severe weather, which may help to inform wildlife conservation in a volatile climate.


Assuntos
Tamanho Corporal , Tempestades Ciclônicas , Mamíferos , Animais , Altitude , Biodiversidade , Carnivoridade , Conservação dos Recursos Naturais , Dieta/veterinária , Ecossistema , Clima Extremo , Inundações , Previsões , Herbivoria , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Moçambique
20.
Res Gerontol Nurs ; 16(6): 270-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015159

Assuntos
Clima Extremo , Humanos , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...